onsemi

APPLICATION NOTE
www.onsemi.com

NCN26010 - Getting Started

Basic Configuration,
Communication and
Exception Handling

AND90155/D

Introduction

The NCN26010 10Base—T1S device has been developed
to adhere to the IEEE 802.3cg specifications, as well as the
SPI protocol of the Open Alliance (TC6) with various
optional additional capabilities.

For correct and reliable operation, there are a few things
to keep in mind when configuring NCN26010, especially
since the device cannot participate in communication in a
multi-drop segment without correct configuration. Also,
there is a risk of permanently disrupting the entire segment
in the event of improper configuration.

This application note is intended to provide users with a
guideline for configuring NCN26010 for their specific
application.

Only the basic settings needed are described here, and
these are discussed using configuration examples.

Reference Documents

[1] IEEE802.3cg-2019

“IEEE Standard for Ethernet

Amendment 5:

Physical Layers Specifications and Management Pa-
rameters for 10 Mb/s Operation and Associated Power
Delivery over a Single Balanced Pair of Conductors”

IEEE Computer Society, ISBN 978-1-5044-6420-8

[2] OPEN Alliance
TC6 - 10BASE-T1x MACPHY Serial Interface
Version 1.0 from 14.September 2020

Operating Modes
NCN26010 offers mandatory and optional operating

modes as defined in the IEEE 802.3cg Standard as well as
some features that offer extended functionality:
® CSMA/CD as the basic operation and fall back
® Physical Layer Collision Avoidance (PLCA)

+ Burst Mode

+ Precedence Mode
® Enhanced Noise Immunity (ENI)

As a MAC-PHY device, the NCN26010 integrates both
a 10Base-T1S Physical Layer Device and an IEEE802.3
Clause 4 Compliant Media Access Controller into a single
device. This combination offers Ethernet communication to
low cost MCUs, that offer a SPI interface capable of running
at least 15MHz and having a TCP/IP stack (e.g.,
FreeRTOS+) implemented in software.

We will highlight the basic functionality of the Open
Alliance MACPHY SPI protocol. For in depth details, users
are recommended to consult the OPEN Alliance TC6
document in revision 1.0.

To illustrate the basic use of the part, this application note
starts with discussing how to read and write configuration
registers as well as sending actual ethernet frame data
through the SPI interface.

Further down in the text a set of basic configurations and
the use of Address Filters and Filter Masks inside the MAC
will be explained.

SPI & IRQ

)

Host MCU or
Computer

NCN26010

LINEN/P

<uulp oI -—= ==

Figure 1. Simplified Block Diagram

© Semiconductor Components Industries, LLC, 2022

July, 2022 - Rev. 1

Publication Order Number:
AND90155/D

http://www.onsemi.com/

AND90155/D

APPLICATIONS INFORMATION

SPI Interface

NCN26010 has implemented all mandatory features of
the OPEN Alliance TC6 SPI protocol.

The Protocol uses the SPI interface for both Ethernet
frame receive and transmit as well as exchange of
configuration data through so called control command
transactions.

Control and data transactions can be differentiated by
looking at the MSB of the 32-bit long communication
header.

Control Command Header

A control command is indicated by having bit 31 (DNC =
Data — Not Command) set to zero. The format for a control
command looks like this:

31 30 29 28 27 26 35 24 23 22 21 20 19 18 17 16

| 0 | 0 |WNR| AID | MMS ADDR [15:8]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADDR [7:0] LEN P

Figure 2. Control Command Format

Data Header

To transfer ethernet data (in both directions) the host will
have to send valid data transfer headers followed by the
actual Ethernet data. A data transfer header is characterized

by bit 31 being set to one. The following shows the fields of
a Data Header with respect to use with the NCN26010
device.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
1 0 NORX | © 0 0 0 0 0 DV sV SWO
15 14 13 12 11 10 9 8 7 6 5 4 3 2 il 0
| 0 | EV | EBO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |

Figure 3. Data Header Fields

Note that in the NCN26010 case only the fields NORX,
DV, SV, SWO, EV, EBO and the mandatory (odd) Parity P
are used. All other bits are recommended to be always sent
containing 0.

For a detailed description of the field names and functions,
please consult the Open Alliance TC6 document, rev 1.0.

Writing and Reading Configuration and Status register
To write or read a single register, a total of 12 bytes will

have to be sent to the NCN26010 10Base-T1S MACPHY.
Control command starts with a command control header

followed by:

® 32 bits of register content and 32-bit dummy data for a
register write control transaction (register write)

® 64 bits of dummy data for read control transaction
(register read)

SPI, being bidirectional full duplex, needs one SCK
transition per transferred/received bit. To receive the
appropriate number of bytes for a register read or write
transactions, dummy bytes need to be sent by the MCU host
on the MOSI line to the NCN26010 device.

The connected MCU must be able to transfer a complete
transaction without de—asserting the MACPHY’s SPI chip
select.

It appears easiest to prepare two 12-byte long arrays for
register read and write. Fill the array with correct data
(header and write data) and then send it in a 12-byte bulk
transfer over SPI, while receiving the result into the 12-byte
receive buffer.

www.onsemi.com

2

http://www.onsemi.com/

AND90155/D

Register Read Example:
An application wants to read the MACPHY’s SPI
Identification register located at MMSO0 Address 0x0001.

First, we need to generate an appropriate header:
Follow this theme to determine the header:

Field 31 30 29 28 27 26 25 24 23 22 21 20 19 18

17

WNR 0
AID 0 [9) () 0 0 0 0 0 0 0 0 [9)
MMS 0
ADDRESS 0 1 0 0 0 0 0 0 0 0
LENGTH 0

bitwise OR 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 [1 0 0 0 0 0 0 0 0

odd parity

1 if number of ones is even, else 0 0

Header

0| o 0‘0‘0‘

hex 0 0 0

0 1 0 0

Figure 4.

Once the header is determined, fill the array with zero byte
for a read operation.

This will provide a byte array to be sent on the MOSI and
received on the MISO with the following content:

Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte
0 1 2 3 4 5 6 7 8 9 10 11
HEADER DATA
MOSI 00 ‘ 00 ‘ 01 ‘ 00 00 00 00 00 00 ‘ 00 ‘ 00 ‘ 00
MISO DONT CARE 00 00 01 00 READ DATA

ECHOED HEADER

Figure 5.

A program routine that would read this register would
have to look at the last two 32-bit words in the data stream.

The penultimate 32-bit word (echoed header, Bytes 4 to
7) should be equal to the command header sent on the MOSI
line to the MACPHY, while the last 32-bit word contains the
actual data of the register.
Note that register reads always return 32-bit words of
register content, even if the underlying register only
contains 16 bits of usable content.

When there is a parity error on the header due to either
malforming of the header by using an invalid parity bit
calculation or a transmit error on the SPI, the echoed control
header and all subsequent 32-bit words will be 0x40000000,
indicating a “HEADER BAD” condition. As a result, the
MACPHY will ignore the command, a connected host can
use that information to detect a Control Command error and
trigger a retransmission of a correct control command.

www.onsemi.com

3

http://www.onsemi.com/

AND90155/D

Register Write Example: To enable TX and RX as well as having the MAC calculate
Assume you want to write the MAC Control 0 register and auto—append the FCS (Frame Check Sequence) to every
inside the NCN26010 to enable TX and RX transfers Ethernet frame it will send, the bits 8 (FCSA), 1 (TXEN) and
between the integrated MAC to and from the integrated 0 (RXEN) will have to be set in the register. This results in
PHY, while also having the MACPHY calculate the Ethernet a data word to be written which contains the value
Frame’s Frame Check Sequence (FCS) to off—load the MCU 0x00000103.
from having to perform that calculation. Similar to the above example for register read, we need to
Consult the Datasheet of NCN26010 to find the MAC first determine the correct control command header for a
CONTROLO Register. It is in MMS 1 (Memory Map single register write. Following the above scheme, we would
Selection Group 1) at address 0x0000. get:
Field 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
WNR 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 oOjofJofojojJOofjOofO]JOo]|oO 0
AID 0 0 0 1 0|0 0 0] o0 0
MMS 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 [0

ADDRESS 0 OjojfofojOojJOfOfO]JO]foO 0

LENGTH 0 of(fofjfofjfojofOojoOofOfO]foO 0
bitwise

OR 0 0 1 1 0 0 0 1 0 [N 0
odd

parity 1if number of ones is even, else 0 0
Header o’o|1|1‘o|o|0‘1 0|0‘0|o ol o] ofl o] o] o o|0‘0|o|0’0|0‘o|0‘0|0|0|0 0
hex 3 1 0 0 0 0 | 0 0

Figure 6.
Once we have determined the header, we fill the array with This will give us a byte array to be sent on the MOSI and
the data we want to write into the register. received on the MISO with the following content:

Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte

0] 1 2 3 4 5 6 7 8 9 10 11
HEADER DATA Don’t Care
MOSI 31 00 00 01 00 00 01 03 00 00 00 00
MISO DONT CARE 31 00 00 01 00 00 01 03
ECHOED HEADER ECHOED WRITE DATA
Figure 7.
Note that the Parity checking works the same way as in the register. A Connected MCU would have to handle this
register read example. A false Parity bit in the header results situation accordingly by re—issuing the register write
in subsequent 32-bit words to be set to 0x40000000. In such transaction with an intact header. Also, it is important that

case the MACPHY would not alter the content of the data is sent MSB first.

www.onsemi.com
4

http://www.onsemi.com/

AND90155/D

The following code snippet should give an example
implementation of a function generating the command
transaction header:

struct TC6_command header {
unsigned int WNR :1;
unsigned int AID :1;
unsigned int MMS :4;
unsigned int ADDR: 16;
unsigned int LEN:7;
unsigned int P:1;
bi

unsigned int CalcCmdHeader (struct

TC6_command_header header) {

unsigned int result = 0;
result |= header.WNR<<29;
result |= header.AID<<28;
result |= header.MMS<<24;
result |= header.ADDR<<8;
result |= header.LEN <<1;

result |= ! builtin parity(result);

return result;

Figure 8.

The above examples illustrate how to generate a valid
control transaction allowing single register read and write.

Readers of this application note are encouraged to check
the Open Alliance TC6 document for details on how to read
consecutive register addresses in one SPI transfer.

Sending and Receiving Ethernet Frames

The OA-TC6 Protocol is designed not only to allow
device configuration through the SPI interface, but also to
utilize the same interface to transport Ethernet frames in
both directions, either in a half-duplex or full-duplex
fashion, depending on the capabilities of the software
running on the host system. Please note, however, that the
actual Ethernet traffic on the mixing segment is always
half-duplex.

Ethernet frames are transferred in both direction in
so—called chunks.

The Concept of Data Chunks

The NCN26010, implementing the OA SPI protocol,
transmits Ethernet data to/from a connected host device or
system using “data chunks”.

A data chunk is a fragment of an Ethernet frame or on short
frames an entire Ethernet frame. Data chunks in the transmit
direction have a data header followed by a predefined
number of pay load data. NCN26010 can be configured to
8, 16, 32 or 64 bytes of pay load per chunk, with the default
being 64 bytes. In the receive direction, when a host is
receiving data from the NCN26010 MACPHY, the pay load
is sent first and is followed by a 32-bit data footer. The footer
indicates to the host:

o [f the sent data contains valid Ethernet frame data.

® If there were errors seen on the last transmission.

® The available number of data chunks in the

NCN26010’s receive buffer ready for reading.
® The available number of empty transmit chunks that

can currently be used for TX data transfers.

A full ethernet frame that is longer than the amount of data
that a single data chunk can transport will need to be cut into
pieces that fit inside data chunks. This concept allows
interrupts of an Ethernet frame exchange between
NCN26010 and host device without losing data, as long as
there is enough space available in the 4 kbyte send and
receive buffers inside the NCN26010 device.

Depending on configuration, the Ethernet frame data may
or may not contain the 4-byte FCS (frame check sequence).
When configured to calculate and auto append the FCS,
transmit data is not expected to have the FCS appended
when it is sent to the NCN26010 by the host device.
Similarly, when FCS checking inside the NCN26010 device
is enabled, incoming frames do not have to provide an FCS
since invalid frames (frames that have an invalid FCS) will
not be stored in the RX buffer (i.e. they will be dropped).

NCN26010 can be configured to either operate in “Store
and Forward” mode or a “Cut Though” mode of operation.

In Store and Forward mode, entire frames will be stored
inside the device’s buffer before they are either sent to the
single twisted pair Ethernet segment or received from the
ethernet medium.

Cut Though mode has more stringent requirements on the
latency and throughput performance of the software running
on the host, as the host will always have to keep up with the
speed of the incoming and outgoing ethernet data. Slowing
down communication, caused by long interrupt service
routines or unfavorable task switching when using
multitasking operating systems, will cause data to be lost
due to TX buffer underruns or RX buffer overruns.

This application note will not address data exchange using
the NCN26010’s Cut Though mode but rather focus on the
Store and Forward mode of operation.

When running in Store and Forward mode, the host will
always have to keep an eye on the buffer fill levels,
especially for the RX side (or downstream). For TX
upstream traffic, the software running on the host can easily
defer traffic until the required amount of data chunks is
available (i.e., the amount that would fit the current Ethernet
frame scheduled to be transferred).

As the host does not have the RX (downstream) data flow
under control, precedence should be given to RX traffic if
the device exchanges data in a half—duplex fashion.

The selection of the chunk size, among other
configuration options, imposes a minimum speed on the SPI
interface that connects NCN26010 to the Host MCU or
System.

When using a simple configuration, where new Ethernet
frames are only allowed to start at the beginning of a chunk,
the required SPI speed depends on the length of the Ethernet

www.onsemi.com

5

http://www.onsemi.com/

AND90155/D

frame as well as the chunk size: The following graph
illustrates this relationship.

|
i

Figure 9.

From this graph, the limitation of this approach becomes
obvious. When the application primarily uses short frames,
a smaller chunk size might give a higher throughput,
depending on how the NCN26010 is configured. In this
simple configuration, the extreme would be 65-byte long
frames with a chunk size of 64 bytes. This will require a SPI
speed of 21 MHz.

NCN26010 is designed to support SPI speeds of up to
25 MHz on the SCLK, so even under this condition, the
MACPHY will be fast enough to transport the required data;
however, the application program or driver will have to
handle both RX and TX simultaneously. As the Ethernet
frames get larger in size, the default chunk size of 64 bytes
will require lower clock speeds on the SPI interface.

In a multi-drop environment, we could assume that most
of the traffic is in the RX direction. Due to the 10Base-T1S
half-duplex nature, a 25 MHz SCLK should provide stable
dataflow without loss of data in most of the cases, even when
handling the SPI TX and RX traffic in a half-duplex fashion.

When NCN26010 should transmit data on the single pair
Ethernet segment a host will have to send a series of valid
data chunks containing the complete ethernet frame data.

A new Ethernet frame will start with the data header’s SV
flag (Start Valid) set to one. In the simple case where the
frame is only allowed to start at the beginning of a chunk
right after a CS (chip select) being asserted, the Start Word
Offset will always be 0. If the ethernet frame fits inside a
single data chunk, the EV (End Valid) flag will also have to
be set as well as the position of the last valid byte of payload
data. Note that when the Ethernet frame data to be
transmitted is shorter than the minimum required Ethernet

frame length of 64 bytes (including source/destination
address, length, field/ether—type, and FCS), the MAC inside
NCN26010 will add the padding bytes required to extend the
frame to its minimum required length. Padding bytes as well
as FCS will only have to be provided by the host, if
NCN26010 is configured to not auto—append the FCS.

Analogue to the calculation of a control transaction
header, the data transaction header can be generated as
shown in the example code below:

struct TC6_data_header {
unsigned int NORX :1;
int DV :1;
SRS
SWO:4;

EV: 1;

EBO: 6;
P:1;

unsigned
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
bi

unsigned int
header) {
unsigned int result = 0x80000000;
for a data transaction

CalcDataHeader (struct TC6 data header

//DNC is always one

result |= header.NORX<<29;

result |= header.DV<<21l;

result |= header.SvV<<20;

result |= header.EV<<14;

result |= header.EBO <<8;

result |= header.SWO <<16;

result |= ! _ builtin parity(result);

return result;

}

Figure 10.

www.onsemi.com

6

http://www.onsemi.com/

AND90155/D

Sending Ethernet Frames

Here we only describe sending TX frames as referred to
as “TX Frame ends at Chunk Boundary” as well as “Every
TX frame fits into Chunk”. Please see [2] “Figure 8:
Transmit Data Chunk Cases” for details.

We can distinguish three cases of frame data that need to
be handled differently:

1. Frame fits entirely into a single data chunk

2. The Ethernet frame fits into two data chunks

3. The Ethernet frame need more than two data
chunks

In the first case users will send a data header followed by
the actual frame data. the data header will have these bits set:
e SV=1
e DV=1
e EV=1

EBO (End Byte Offset) points to the last byte of valid data.
Note that even if the Ethernet data does not fill the entire
chunk (i.e. an ARP broadcast frame has a length of 46 bytes,
so a default 64 byte chunk would not be fully utilized) the
application will always have to send full length data chunks.

In the case of a 64-byte chunk and a 46-byte long ARP
(Address Resolution Protocol) broadcast to be sent, the EBO
will point to byte 45 as the first byte in the chunk has the
index 0.

In the second case, where two chunks are needed to fit the
payload, the first header would have:
e SV=1
e DV=1
e EV=0
e EBO=0
® SWO=0

While the second and last data header in the frame will
have:

e SV=0
e DV=1
e EV=1

® EBO = position of last valid pay load byte
® SWO=0

In the case where more than two chunks are needed to
transfer the payload data to the NCN26010 MACPHY, the
first header will look like the one in the previous case, with:

Sv=1
DvV=1
EV=0
EBO =0
SWO =0

All headers following the first and preceding the last
chunk will have:

® SV=0

DV =1

EV=0

EBO =0

SWO =0

Or 0xA0200000.

The last header will have:

Sv=0

Dv=1

Ev=1

EBO = position of last valid pay load byte
SWO =0

Because of the header preceded data transfer, an
application that sends a data chunk to the MACPHY will
always have to send 4 Bytes more than the chunk’s payload.

For an 8-byte chunk this will be 12 bytes, for 16-byte
chunk 20 bytes need to be provided, a 32-byte chunk needs
36 bytes total, while a 64-byte chunk requires 68 bytes.

Note that these are fixed length even if a data chunk is not
fully used. Data sent after the EBO at a EV=1 chunk is “don’t
care” and can be any random data. For the ease of use it is
recommended to fill the chunk with bytes containing all
ZEeTO0S.

Like sending control transactions, a data transaction
simultaneously works in both directions.

When sending data to NCN26010 via the SPI interface,
the host will receive the same number of bytes back provided
by the MACPHY via the MISO (Master In Slave Out) pin of
NCN26010. Typically, data is sent and received from a
buffer large enough to hold all the data chunk needed to send
frame data. Incoming data would go into a second (i.e., a
receive) buffer.

www.onsemi.com

http://www.onsemi.com/

AND90155/D

Receiving Ethernet Data

While data sent to the MACPHY is preceded by a per
chunk 32-bit header, data chunks sent by the MACPHY
have a 32-bit footer following the actual data.

The footer contains information that the host can use to
direct further communication, regardless of it sending or
receiving more data. The fields of the footer are explained
in [2] section 7.3.7. NCN26010 does not provide the
optional time stamping feature defined by the Open
Alliance, hence the fields RTSA (bit 7) and RTSP (bit 6) will
not be used and always contain 0.

In the context of the NCN26010 device the data footer
looks like this:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
[exsT[HoR8| sync| RCA | pontcare ov | sv | SWO |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[0] ev] EBO | ponT care| TXC

0
[°]

Figure 11.

The fields can be summarized to have the following
functions:

EXST External Status. When this flag is one then the host
program will have to examine the content of the
SPI Protocol STATUSO register (MMS: 0, Address:
0x0008) and handle errors accordingly. See “Error

Handling” section in this Application Note

HDRB Header Bad. This indicates that the MACPHY has
receive a control transaction or data chunk whose
parity bit was not correct. Hence it indicates loss of
data. A host can opt to resend the last transaction/

chunk or handle that situation in another way.

SYNC This is a copy from the SPICFGO register bit 7. It
will normally be set by the host after it finishes con-
figuring the MACPHY. A MACPHY that has its
SYNCH bit set to zero will not send or receive Eth-
ernet data. Once set, SYNCH can only be cleared

by resetting the device

DV Data Valid. The function is the same as for sending
data. When it is one, the chunk contains valid Eth-

ernet data.

SV Start valid. When set to one, the chunk contains

the start of a new Ethernet frame.

SWO Start Word Offset.

Points to the location inside the data chunk where
a new Ethernet frame starts. In the basic configura-
tion, where new frame data can only start at the
beginning of a data chunk directly followed by the
assertion of the Chips Select (CSn) this field should

always be zero

FD Frame Drop. This can only be one in cut through
mode. It indicates to the host that it should discard
the entire Ethernet frame it received, mainly due to
a wrong FCS being received.

End Valid. A chunk with a footer that has EV set
will contain the end of an Ethernet frame. A con-
nected host will typically read data chunks until is
sees the EV flag in the footer. It can then pass a
complete Ethernet frame to its TCP/IP stack or any
other application software or hardware handling the
OSI Layers 3 and above.

EV

EBO End Byte Offset. Same as in transmit header,
points to the last byte of valid frame data when the

EV flag is set.

RCA Receive chunk available. Tells the host how many
more chunks of valid data are available in
NCN26010’s receive buffer for the host to read.
Note that these chunks can belong to more than
one complete Ethernet frame. To avoid data loss
due to receive buffer overflows, the host should
always try to keep the RCA number as low as pos-
sible.

TXC Transmit chunks available. Tells the host how many
transmit chunk are available for writing inside the
TX buffer of NCN26010. Both TXC and RCA could
also be polled by reading the buffer status register

(MMS: 0, Address: 0x000B)

The simplest, yet slowest way of exchanging Ethernet
data is in a half duplex fashion. When sending frames, with
the NORX flag set in the Data Header, NCN26010 is
instructed to not send Ethernet data to the host while
receiving TX frame data from the host.

Likewise, frame data can be received by the host without
providing TX data, when the data header’s DV flag is set to
Zero.

When operating in this fashion, the connected host should
give precedence to reading frames over transmitting frames
or do a “fair—share” of alternating transmit and receive. It is
advised to always try to empty the receive buffer as quickly
as possible.

www.onsemi.com

8

http://www.onsemi.com/

AND90155/D

Basic Configuration

This section discusses the minimum configuration
settings required to use the NCN26010 as well as some of its
optional features. It starts with the simple case of
CSMA/CD without address filtering and then discusses how
to enable additional features:
® Address filtering

e PLCA
¢ Leader mode
+ Follower mode
+ Burst mode
® FCS frame check
® FCS calculations off-load

® Enhanced Noise Immunity

Configuring NCN26010 for the simplest form of
operation means setting it to strictly work in CSMA/CD
(carrier sense multiple access / collision detection) mode,
with none of the address filtering options being activated.

First, we will have to set the SPI protocol format to the
desired form. In this application note we chose to select the
following SPI protocol transfer options:
® Receive frames will be aligned to start at the beginning

of a receive chunk payload (byte 0) directly following

CSn assertion by the host
® Transmit and Receive in “Store & Forward” mode

® Control Data Read/Write protection disabled (see [2]
section 7.4 for details)
® Default payload size of 64 bytes per data chunk.

To avoid configuration glitches with stations
inadvertently occupying the Single Pair Ethernet medium,
it is recommended to configure the device in the following
order:

1. Device reset
A device reset can be forced in three different
ways: a) power cycling (power—on Reset);
b) asserting the physical RSTn pin on the device;
or
¢) writing configuration registers.
Since sometimes error handling requires a device
reset, we chose the latter method of resetting the
device through a register write.
NCN26010 has a dedicated register allowing it to
be soft reset.
Setting bit 0 in the RESET register located at
MMS 0, Address 0x0003 will trigger a soft reset.
Assume you have a routine to write a
configuration register called T1SRegWrite (MMS,
ADDR, DATA). To issue a device reset, you would
call:
T1SRegWrite(0,0x0003,0x00000001).

2. PHY related configurations
a.) PLCA
b.) ENI

In this simple CSMA/CD configuration, no action
is required, other than “activating the link” by
setting bit 12 in the PHYCRTL register (MMSO,
Address 0xFF00) to one:

T1SRegWrite(0, 0xFF00, 0x00001000)

3. MAC related configurations:

a.) FSC filtering and calculation

b.) Address filtering

c.) Broadcast and Multicast filtering
For basic operation we chose the device to
auto—append the FCS, allow Broadcast and
Multicast messages, and not filter any MAC
addresses. This is effectively running the device in
promiscuous mode. To achieve this, we set bit 8
(FCS append), bit 1 (TX Enable) and bit 0 (RX
Enable) in the MACCTRLO (MMS 1, address
0x0000):
T1SRegWrite(1,0x0000,0x00000103)

4. SPI configuration

a.) Data alignment

b.) CutThrough or Store and Forward

c.) Chunk Payload size

d.) TXC Threshold

e.) Finally set the SYNC bit to enable the

communication

We want the device to align all new frames with
the CS assertion starting at byte 0 of the new data
chunk. The part should operate in “S&F” mode for
both TX and RX and the TXC Threshold we want
to be 16.
All settings are done in the SPICFGO register
(MMS 0, Address 0x0004).
We need to set SYNC (bit 15), CSARFE (bit 13),
TXCTRHESH = 0x3 (bits 11 and 10), CPS = 0x6
(bits 2:0). The resulting register content is:
0x0000A CO06.

In summary, basic operation can be achieved by using the
configuration shown in the table below, when writing the
registers in the order shown (we refer to this as the
configuration “card”).

MINIMUM CSMA/CD CONFIGURATION

order MMS ADDR DATA comment
1 0 0x0003 0x00000001 Reset
0 O0xFF00 0x00001000 Activate Link
3 1 0x0000 0x00000103 Auto FCS +
MAC enable
4 0 0x0004 0x0000AC06 Config SPI
and set
SYNC

Note that the above lists show the bare minimum that
needs to be sent to the device after reset to allow the
MACPHY to participate in communication over the single
pair Ethernet medium and with the host Computer or MCU.

www.onsemi.com

http://www.onsemi.com/

AND90155/D

Adding PLCA

When we want the device to be part of a PLCA enabled
network, we need to configure and enable the functions of
the PLCA Reconciliation Sublayer (RS) inside the
NCN26010 MAC PHY. Please consult [1] Clause 148 for a
detailed description of Physical Layer Collision Avoidance
(PLCA). In a PLCA enabled collision domain, there needs
to be one so—called Leader. This is typically the device that
is assigned the PLCA ID=0. The Leader is the station that
starts PLCA cycles by submitting the BEACON signal on
the line.

The leader will also need to be configured with a max node
number that needs to be equal or higher than the highest ID
assigned to any station participating in the local collision
domain.

When we want the part to be a Follower node, we must
assign it a local ID and enable PLCA.

This is done by setting the appropriate node ID in the
PLCACTRLI1 register (bits 7:0) and enable PLCA (bit 15)
in the PLCACTRLO register.

As an example, assume we chose ID=7 for the node we
configure. The configuration card from the previous
example must be extended and will now look like this (lines
in red show the added configuration items):

MINIMUM PLCA FOLLOWER NODE

0xCAO02 | 0x00000800 PLCAID=0
Node Count =

8
Enable PLCA

Config SPI
and set
SYNC

4 0xCAO01
0x0004

0x00008000
0x0000AC06

We can add more configuration options following this
principle. For instance, PLCA has additional options that
can be enabled to deal with specific situations in application
that have an uneven spread of sent data from different
stations. For example, if a particular station needs to send
twice the amount of data than all others, it could be allowed
to send two or more frames per PLCA transmit opportunity
instead of only one. This is supported enabling the PLCA
burst mode (see [1] Clause 148.4.4.2). Burst mode is
enabled by setting the maximum burst count (the number of
additional Ethernet frames that may be transmitted during a
single transmit opportunity) bits 15:8 to the number of
additional frames a station can send per transmit
opportunity. When we want to allow the station to send two
frames per TO (Transmit Opportunity), we need to set the
MAXBC inside the PLCABURST register to 1. Hence the
configuration card will change to:

PLCA HEAD NODE (NODE COUNT 8) WITH BURST
ENABLED

CONFIGURATION
order | MMS ADDR DATA comment
1 0 0x0003 0x00000001 Reset
0xFF00 0x00001000 Activate Link
0x0000 0x00000103 Auto FCS +
MAC enable
4 4 0xCA02 0x00000007 Set PLCA ID
to7
4 0xCAO01 0x00008000 Enable PLCA
5 0 0x0004 0x0000ACO06 Config SPI
and set
SYNC

When instead we want to configure the node to be the
PLCA leader, the local ID is set to 0 and the maximum node
count needs to be set to a reasonable number (8 or larger).

Assume we want to set up a leader that supports 8 nodes
in the collision domain (the multi-drop sequence). The
configuration card will change to the one shown below:

order | MMS ADDR DATA comment
1 0 0x0003 0x00000001 Reset
O0xFF00 0x00001000 Activate Link
3 1 0x0000 0x00000103 Auto FCS +
MAC enable
4 4 0xCAO02 | 0x00000800 PLCAID =0
Node Count =
8
4 0xCA05 0x00010080 Allow one
extra frame
per TO
0xCAO01 0x00008000 Enable PLCA
5 0x0004 0x0000AC06 Config SPI
and set
SYNC

Enhanced Noise Immunity Mode

MINIMUM PLCA HEAD NODE (NODE COUNT 8)

order | MMS ADDR DATA comment
1 0x0003 0x00000001 Reset
0xFF00 0x00001000 Activate Link
3 1 0x0000 0x00000103 Auto FCS +
MAC enable
+ Address

In applications that are exposed to an elevated level of
noise on the Single Pair Ethernet line (i.e., close to motors
or AC lines, or multiple SPE connections bundled in a single
multi twisted pair cable) NCN26010 provides superior
performance by offering a non-standard feature called
Enhanced Noise Immunity (ENI). ENI works without side
effects in PLCA enabled network segments. When
activating ENI in CSMA/CD operation, the station ability to

www.onsemi.com

http://www.onsemi.com/

AND90155/D

detect collisions will slightly degrade, however ENI will not
break communication on the network.

Enabling ENI can be done by simply setting bit 7 in the
PHYCFGTI register (MMS 4, address 0x8001). Adding this
to the previous example will make the configuration card
look like this:

PLCA HEAD NODE (NODE COUNT 8) WITH BURST
ENABLED AND ENI

order | MMS ADDR DATA comment
1 0 0x0003 0x00000001 Reset
2 0 0xFFOO | 0x00001000 Activate Link
1 0x0000 0x00000103 Auto FCS +
MAC enable
4 4 0xCAO02 | 0x00000800 PLCAID=0
Node Count =
8
4 CA05 0x00010080 Allow one
extra frame
per TO
4 0xCAO01 0x00008000 Enable PLCA
0x8001 0x00000083 Enable ENI
6 0 0x0004 0x0000ACO06 Config SPI
and set
SYNC
Address Filtering

Next, we can look at enabling address filtering.
NCN26010 has four configurable MAC address filters that
can be set with wildcards to match a wide range of
destination MAC address or just single dedicated ones.

Address filtering is enabled by first setting the ADREF field

(bit 16) in the MAC Control0 register (MMS 1, Address
0x0000). Then a filter rule can be set in one of the
ADDRFLT registers and corresponding filter masks must be
defined in the ADDRMASK registers.
If the device is to filter a specific address, all bits of the
corresponding ADDRMASK must be set to 1. ADDRFLT
and ADDRMASK are both 48 bits long, corresponding to
the length of standard Ethernet MAC addresses. Only bits
with the MASK bit set to 1 are considered for filtering.

Example: the address filter should only store incoming
frames that match the MAC Address 60:c0:bf:01:02:03

We use ADDRFLTOH/L to input that address into the
filter:

ADDRFILTOH=0x800060c0

ADDRFILTOL=0xbf010203

Note that bit 31 in the ADDRFILTOH enables the filter
rule when set to 1.

As we want the filter to look at the entire MAC address,
we need to set the ADDRMASKOH/L accordingly.

ADDRMAKSOH = 0x0000FFFF

ADDRMASKOL = OxFFFFFFFF

To set the filter and the mask right, it is important for users
of this feature to understand the principal of operation:

The filter takes effect if the bitwise AND operation of the
destination address of the incoming Ethernet packet is equal
to the content of the filter register.

So,

Destination MAC address & ADDRMASK = Filter

Must be true for a frame to pass the filter.

With that, if we wanted the filter to match on only the OUI
(60:CO:BF is onsemi’s OUI)

We could set the filter mask to

ADDRMAKSOH = 0x0000FFFF

ADDRMASKOL = 0xFF000000

And the filter to:

ADDRFLTOH = 0x00060C0

ADDRFLTOL = 0xBF000000

If we do the test for incoming destination address of
60:C0:BF:01:01:15 (let’s use binary notation here)
0110 0000 1100 0000 1011 1111 0000 0001 0000 0001 0001 0101
&
1111 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 0000

0110 0000 1100 0000 1011 1111 0000 0000 0000 0000 0000 0000
6 0 C¢C 0 B F 0 0 O 0 0 O

we see that the MAC address filter accepts all frame
whose destination address starts with 60:CO:BF

If we extend the configuration card for this MAC address
filtering, it will look like this:

PLCA HEAD NODE (NODE COUNT 8) WITH BURST
ENABLED AND ENI, MAC FILTER ON
60:C0:BF:01:02:03

order | MMS ADDR DATA comment
1 0 0x0003 0x00000001 Reset
O0xFF00 0x00001000 Activate Link
3 1 0x0000 0x00010103 Auto FCS +
MAC enable+
Filter Enable
4 4 0xCAO02 | 0x00000800 PLCAID =0
Node Count = 8
4 CAO05 0x00010080 Allow one extra
frame per TO
0xCAO01 0x00008000 Enable PLCA
4 0x8001 0x00008003 Enable ENI
1 0x0020 0xFF000000 ADDRMASKOL
1 0x0021 0x0000FFFF ADDRMAKSOH
1 0x0010 0xbf000000 ADDRFLTOL
1 0x0011 0x800060C0 | ADDRFLTOH +
enable bit set
6 0 0x0004 0x0000ACO06 | Config SPI and
set SYNC

www.onsemi.com

http://www.onsemi.com/

AND90155/D

All of these examples demonstrate the use of
configuration registers, as described in the datasheet of
NCN26010, to set the part into simple and advanced modes
of operation. Users are invited to explore more of the part’s
capabilities by studying the NCN26010 datasheet.

Handling Exceptions

The following is a guide on potential actions to take when
the NCN26010 signals errors or exceptions to the host. The
content of this section should be regarded as
recommendations, as there will be a multitude of different
possible action that could result from errors or exceptions
reported by NCN26010 depending on the application’s
needs.

Whenever NCN26010 needs to notify the host of
occurring events, it will assert the IRQn pin to trigger an
interrupt event in the software running on the host.

In the normal case, where there are no errors or abnormal
events, the interrupt is triggered to notify the host of new
ethernet frames having been received and stored in
NCN26010’s RX buffer ready to be picked up by the host.

Whenever an interrupt is triggered, the Open Alliance
recommends in [2] to have the host get a valid footer to
determine if any action, other than receiving data must be
taken.

If the host finds the EXT flag set in the footer, it will have
to determine the kind of error or exception it needs to handle.
To ascertain the specific issue reported the host can then read
the SPISTATUSO register.

From this, the host can extract 10 different error
conditions that we will discuss below.

The status register can identify the following errors and
exceptions:

Symbol Description

CDPE Control Data Protection Error

Only if the SPI protocol is configured to operate
in control command Protection mode (see [2]),
this would indicate that the last control command

was corrupted.

TXFCSE Transmit FCS Error.

Only if MACPHY is configured to expect the
FCS from the host, then this error indicates a
corrupt Ethernet frame has been received from
the host via SPI

PHYINT Exception detected by the integrated PHY inside

NCN26010
A host will have to collect more data to deter-
mine the root cause

HDRE Header Error. Indicates a parity check error in

the last data or control header sent by the host.

RESETC Not a real error. RESETC is asserted every time
the NCN26010 has completed a reset. This is an

indication for the host to check and resend the

configuration data to NCN26010

LOFE LOSS of framing.

Indicates that a transaction did not complete due
to CS being de-asserted before the transaction
(either data or control) was completely trans-
ferred

RXBOE Receive buffer overflow Error.
the 4kbyte receive buffer inside the NCN26010
is full. This means data loss.

TXBUE Transmit buffer underflow Error.
Only happens in “cut through” mode, when the
host sends data at a slower pace than required
by the MACPHY to maintain a steady dataflow
while transmitting an Ethernet frame.

TXBOE Transmit buffer overflow error.
Host was trying to send transmit data to the
NCN26010 MACPHY although it's TX buffer is
full.

TXPE SPI Transmit protocol Error

TX Data Chunk protocol Error in header. Either
of:
DV=1 without previous SV=1
Repeated SV=1 without EV in between.
SWO or EBO point to a location that is beyond
the length of the data chunk.

Handling Control Data Protection Error

When the SPI Status 0 register (MMS 0, address 0x0008)
has bit 12 set, it indicates that a Data protection error
occurred during the SPI transfer of a control command
transaction. This can only be reported when running in the
control command protection mode (see [2] for details),
where each 32-bit data word is followed by a copy of its 1’s
complement.

When this error occurs, the NCN26010 ignores the
control command. The Host should re-send the control
command in this case. If these errors happen repeatedly or
frequently, it is an indication that, either:
® The SPI speed is too fast
® The load on the SPI pins is too high
® The distance between the SPI master (host) and the

Slave (NCN26010) is too long for the selected SPI

speed.
® Excessive noise on the PCB.

In such case, users should verify their PCB design and make
modifications accordingly or set the SPI speed to a lower
frequency.

Handling TXFCS Error

When the NCN26010 is configured to expect an FCS from
the host along with the Ethernet frame data (FCSA bit of
MACCONTROLO register set to 0), it will compare the
incoming FCS (frame check sequence) with the one it
internally calculated. If it finds a mismatch, it issues the
TXFCS Error, informing the host that the last Ethernet

www.onsemi.com

12

http://www.onsemi.com/

AND90155/D

Frame it received from the SPI interface is corrupted and
will not be sent on the single pair line to other stations.
(discarded frame).
The host should resend the corrupt frame.

This error, when occurring frequently, could be an
indication that either:
® The SPI speed is too high, or
® The load on the SPI pins it too high, or
® The SPI pins are too noisy.

Look for signal integrity issues on the SPI interface and
verify the timing on the SPI interface.

Handling Header Error

A header error indicates a wrong Parity bit or any other bit
in the header of a control or data transfer over SPI to have
inadvertently transferred inverted.

If this happens in a control data transmission, then the host
could simply resend the data. In control data transactions,
this will be detectable before the actual interrupt is triggered,
because the echoed control header will be receiving
0x400000000 in this case. When the host software can react
on the echoed control header and detect the error that way,
it can ignore the interrupt.

When a Header error occurs, the MACPHY ignores all
further data until the CSn pin is de—asserted.

A host could either try to resend the frame or rely on
protocols above layer 2 to eventually re-send the frame
(TCP connection would do this when they do not get a frame
acknowledged) or entirely ignore this situation and accept
the loss of data.

Like with the previous error types, users are encouraged
to check their software and hardware implementation with
respect to the SPI interface. Root cause could be too tight
interface timing, too fast interface speed, too high loads on
the SPI interface, or other various issues.

Handling RESET Complete Event

When the host extracts a RESETC condition from the
STAUTSO register, it does not necessarily point toward an
error in communication.

RESET Complete gets triggers every time the device has
completed a reset and is ready for operation.

This happens, for instance, when the device is
powered—up or when the RSTn is asserted by the host.

This could also happen when NCN26010 is operated on
an instable power supply and the operating voltage dropped
below the brown—-out threshold, causing the MACPHY to
reset.

In such a case, the host should reconfigure the MACHPY.
All traffic that was in transit as well at the data stored in the
RX and TX buffers is lost.

Handling Loss of Framing Error (LOFE)
A loss of framing error can point to two issues:

1. A signal integrity issue on the SPI interface
between the host and NCN26010

2. Software running on the host is not respecting the
OA-TC6 SPI protocol.

In both cases the device may lose data. LOFE happens
when the CSn (or SS, slave select) gets de—asserted before
the end of a transaction on the SPI interface.

To debug this issue, users should monitor the CS line to
see that there are no glitches.

Also, the software routines should be checked for
adherence to the OA-SPI specification (see [2]).

When detecting a LOFE the host could also try to resend
the data.

Handling RXBO Error

As implied by its name, this flag gets set when the RX
buffer of NCN26010 overflows.

In such case, there will be RX Ethernet frame data lost.

To prevent this from happening, the host needs to run the
SPI fast enough to be able to cope with 10Mbit of constant
data traffic. Please see the graph in the “Concept of Data
Chunks” sections for guidance.
Also, the host should handle RX traffic with priority.

Note that NCN26010 has no mechanism to flush buffers
in case of an overflow situation.

If the host sees the overflow, it is good practice to stop TX
traffic and empty the RX buffer as quickly as possible.

Handling TXBO Errors

Transmit buffer overflow errors happen when the host
connected to NCN26010 is sending TX data faster than what
NCN26010 can send on the line. Remember that the
10Base—-T1S is a multidrop segment technology that has
multiple—in some situations up to 40—potential
transmitters on a single bus.

The simplest way to avoid this error from happening is to
check the status of the transmit buffer’s number of chunks
that are available for writing. If the host has an Ethernet
frame that is longer than the number of available chunks in
the TX-buffer, then it should wait for the number of buffers
needed to store such frame to become available before trying
to send the frame to the NCN26010 MACPHY.

On occurrence of this error, the part has already lost data.
In most of the cases that will be the last Ethernet frame sent,
so when this situation occurs, the host could vote for waiting
until the buffer has enough space available and resend the
last Ethernet frame or rely on upper layer mechanism to
handle re—transmission.

Hosts can easily keep track of the available buffers by
looking at the TXC field inside the data footer that is
received with every data chunk sent or read in the buffer
status register.

In a good implementation, TX Buffer overflows should
never happen.

Handling TX Buffer Underrun (TXBU) Errors
A TXBU error gets flagged when the NCN26010 is set to
operate the TX in cut though mode.

www.onsemi.com

13

http://www.onsemi.com/

AND90155/D

Cut though mode can help with the latency of sent
Ethernet frames but the host needs to be fast enough to send
TX data at 10Mbit/sec or faster to not risk the TX buffer be
empty before the full frame has been sent to the Ethernet
medium.

When TXBU errors occur, at least the last Ethernet frame
(basically the ongoing transfer) will be lost.

TXBU can be completely avoided when NCN26010 is set
to store and forward mode.

When the application relies on cut though operation, the
host needs to be able to send Ethernet frame data fast enough
at any time. The required SPI frequency heavily depends on
the average size of the Ethernet frame being sent.

Handling TXPE Errors
Transmit Protocol Errors are another class of error that
users of the NCN26010 are likely to see during software
development only. In an application ready to be deployed,
TXPE errors should never appear, except a data chunk was
rejected (due to a parity error) and not resent.
TXPE gets triggered in case of violation of the basic TC6
protocol specifications. They typically occur when:
® NCN26010 sees a start valid without a previous end
valid flag in the header (only exception is the first data
transfer after setting the SYNC bit)
® DV =1 without a previous SV=1
® EV=1 without a previous SV=1

® SWO or EBO pointing to locations beyond the length
of a data chunk
When these errors happen, customers should look at their

software implementation and correct the flow of data to be
in line with the OA-SPI Protocol (see [2])

Handling PHYINT Error

Additional steps need to be taken, when the MACPHY
signals a PHYINT event.

To determine the actual cause of the event, the host,
besides reading the SPISTATUSO register, will also have to
read the MIIM IRQ STATUS Register (MMS12, Address
0x0011).

Bits 0 to 5 report events that trigger PHYINT events.
These are:
® Physical Collision
® PLCA Recovery
Remote Jabber
Local Jabber
PLCA status change

Link Status Change.

There is no definite recommendation on how to handle
these events as most are informational and could point to
misconfigured networks or issues with excessive noise.

Please consult the NCN26010 datasheet MMS12 register
description for details of the MIIM interrupt conditions.

Summary

In this application note, we have outlined the basic use and
configuration of the IEEE802.3cg 10Base—-T1S Multi—Drop
Ethernet MACPHY NCN26010. We also give guidance on
required SPI speed, how to setup optional and proprietary
features as well as some guidance on how to handle / avoid
errors and exceptions.

onsemi, ONSE€ML, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: TECHNICAL SUPPORT
Email Requests to: orderlit@onsemi.com North American Technical Support: Europe, Middle East and Africa Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 00421 33 790 2910

onsemi Website: www.onsemi.com Phone: 011 421 33 790 2910 For additional information, please contact your local Sales Representative

0

http://www.onsemi.com/
https://www.onsemi.com/site/pdf/Patent-Marking.pdf

