General Purpose Transistor Medium Power, NPN 80 V, 1 A

WDFNW3 CASE 515AA

BCP56M

The BCP56MTW is designed for general purpose amplifier applications. It is housed in DFN2020-3 offering superior thermal performance. The transistor is ideal for medium-power surface mount applications where board space and reliability are at a premium.

Specification Features

- Wettable Flank Package for Optimal Automated Optical Inspection (AOI)
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	80	Vdc
Collector-Base Voltage	V _{CBO}	100	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous (Note 1)	Ι _C	1.0	А
Collector Current – Peak (Note 1)	I _{CM}	2.0	А

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Total Power Dissipation (Note 2) @ T _A = 25°C Derate above 25°C	P _D	1.5	W
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	78	°C/W
Total Power Dissipation (Note 3) @ T _A = 25°C Derate above 25°C	P _D	875	mW
Thermal Resistance, Junction-to-Ambient (Note 3)	$R_{\theta JA}$	138	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	–65 to +150	°C

1. Reference SOA Curve

2. Surface-mounted on FR4 board using a 600 mm² pad area and 2 oz. Cu

3. Surface-mounted on FR4 board using a 100 mm² pad area and 2 oz. Cu

EMITTER 2

MARKING DIAGRAM

М = Date Code

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 2 of this data sheet.

BCP56M

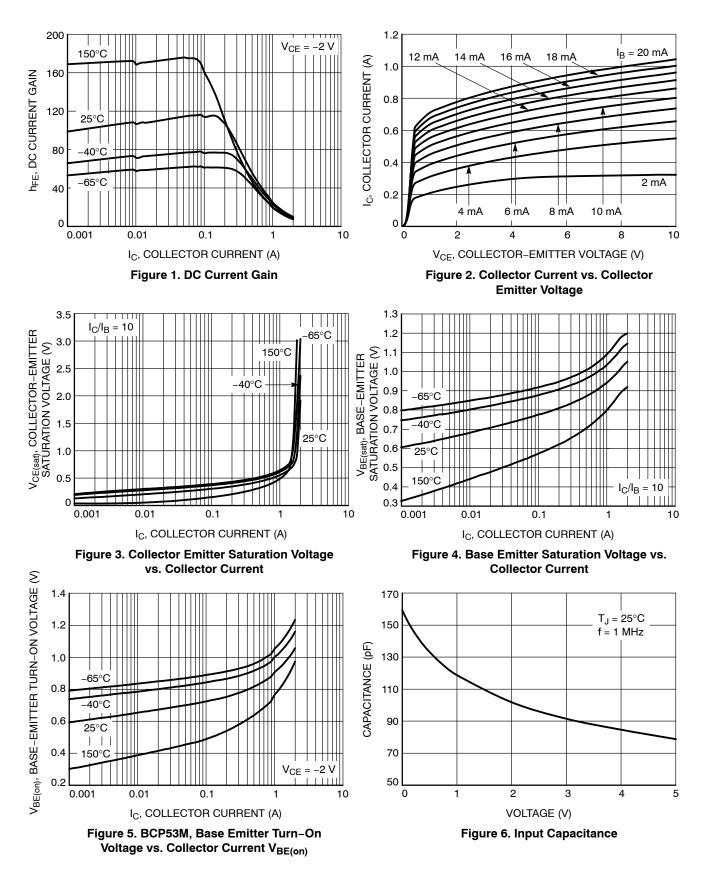
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristics	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($I_C = 1 \text{ mA}, I_B = 0 \text{ A}$)	V _{(BR)CEO}	80	-	-	V
Collector-Base Breakdown Voltage (I _C = 100 μ A, I _E = 0 A)	V _{(BR)CBO}	100	-	-	V
Emitter-Base Breakdown Voltage (I _E = 10 μ A, I _C = 0)	V _{(BR)EBO}	5	-	-	V
Collector-Base Cutoff Current (V_{CB} = 30 V, I_E = 0)	I _{CBO}	-	-	100	nA
Emitter-Base Cutoff Current ($V_{EB} = 5 \text{ V}$, $I_C = 0$)	I _{EBO}	-	-	100	nA
ON CHARACTERISTICS (Note 4)					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	h _{FE}	63 63 63 100 40	- - - -	_ 250 160 250 _	
Collector-Emitter Saturation Voltage (I_C = 500 mA, I_B = 50 mA)	V _{CE(sat)}	-	-	0.50	V
Base-Emitter Saturation Voltage ($I_C = 500 \text{ mA}$, $I_B = 50 \text{ mA}$)	V _{BE(sat)}	-	-	2.0	V
Base-Emitter Turn-on Voltage (I _C = 500 mA, V _{CE} = 2.0 V)	V _{BE(on)}	-	-	1.0	V
SMALL SIGNAL CHARACTERISTICS					
Transition Frequency (I_C = 10 mA, V_{CE} = 5.0 V, f = 100 MHz)	f _T	-	140	-	MHz
Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)	C _{obo}	-	65	-	pF
Input Capacitance ($V_{EB} = -0.5 \text{ Vdc}$, $I_C = 0$, f = 1.0 MHz)	C _{ibo}	-	130	-	pF
Input Impedance (I _C = -1.0 mAdc, V _{CE} = -10 Vdc, f = 1.0 kHz)	h _{ie}	-	4	-	k
Voltage Feedback Ratio ($I_C = -1.0$ mAdc, $V_{CE} = -10$ Vdc, f = 1.0 kHz)	h _{re}	-	0.4	-	X 10 ⁻⁴
Small–Signal Current Gain (I _C = –1.0 mAdc, V _{CE} = –10 Vdc, f = 1.0 kHz)	h _{fe}	-	135	-	-
Output Admittance ($I_C = -1.0 \text{ mAdc}$, $V_{CE} = -10 \text{ Vdc}$, f = 1.0 kHz)	H _{oe}	-	4	-	μmhos
Noise Figure (I _C = 0.2 mA, V _{CE} = 5.0 Vdc, R _S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz)	NF	-	1	-	dB
SWITCHING CHARACTERISTICS			•	•	•
Delay Time (V _{CC} = 30 Vdc, I _C = 150 mA, I _{B1} = 15 mA)	t _d	-	20	-	ns

Delay Time (V _{CC} = 30 Vdc, I _C = 150 mA, I _{B1} = 15 mA)	t _d	-	20	-	ns
Rise Time (V _{CC} = 30 Vdc, I_C = 150 mA, I_{B1} = 15 mA)	t _r	-	20	_	ns
Storage Time (V _{CC} = 30 Vdc, I_C = 150 mA, I_{B1} = 15 mA, I_{B2} = 15 mA)	t _s	-	900	_	ns
Fall Time (V _{CC} = 30 Vdc, I _C = 150 mA, I _{B1} = 15 mA, I _{B2} = 15 mA)	t _f	-	110	-	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Condition: Pulse Width = 300 μ s, Duty Cycle $\leq 2\%$.

ORDERING INFORMATION


Device	Marking	Package	Shipping [†]		
BCP56MTWG	6M	WDFNW3 (Pb-Free)			
BCP5610MTWG	6N				
BCP5616MTWG	6P		3000 / Tape & Reel		
NSVBCP56MTWG*	6M		Sobo / Tape & Reel		
NSVBCP5610MTWG*	6N				
NSVBCP5616MTWG*	6P				

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

BCP56M

TYPICAL CHARACTERISTICS

BCP56M

TYPICAL CHARACTERISTICS

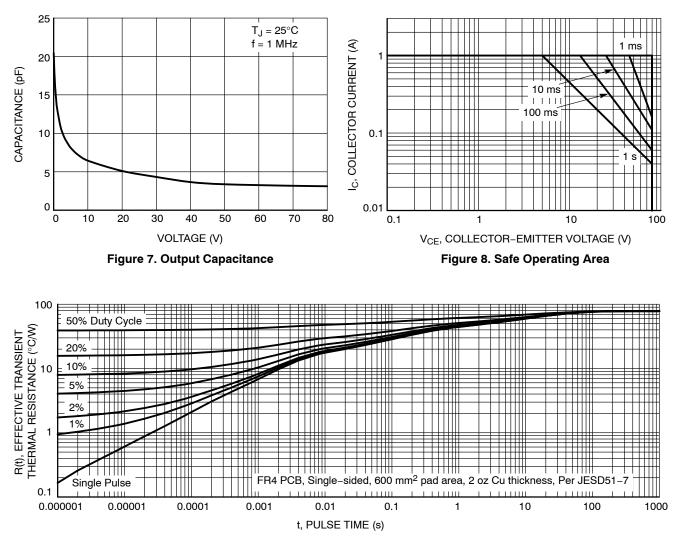


Figure 9. Transient Thermal Impedance from Junction-to-Ambient as a Function of Pulse Duration

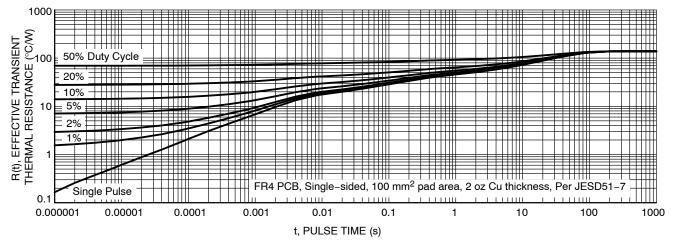
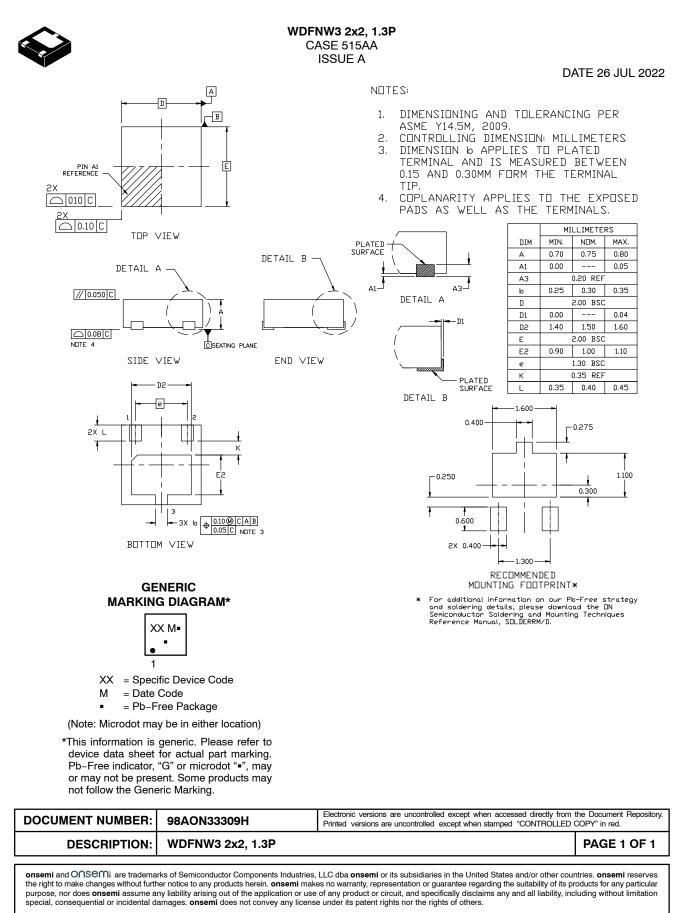



Figure 10. Transient Thermal Impedance from Junction-to-Ambient as a Function of Pulse Duration

onsemi

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>