

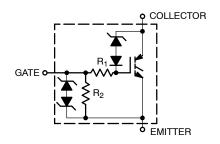
EcoSPARK® 2 HV-HE IGBT 500 mJ, 650 V, N-Channel PTC Heater IGBT FGB5065G2-F085

Features

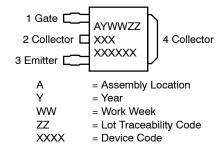
- SCIS Energy = 500 mJ at $T_J = 25^{\circ}\text{C}$
- Logic Level Gate Drive
- RoHS Compliant
- Pending AEC-Q101 Qualification and PPAP Capable

Applications

- PTC Heater Circuits
- High Current Systems
- Rugged Applications


MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Value	Unit
BV _{CER}	Collector-to-Emitter Breakdown Voltage $(I_C = 1 \text{ mA})$	650	V
BV _{ECS}	Emitter-to-Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	28	V
E _{SCIS25}	Self Clamping Inductive Switching Energy (Note 1)	500	mJ
E _{SCIS150}	Self Clamping Inductive Switching Energy (Note 2)	300	mJ
I _{C25}	Collector Current Continuous at $V_{GE} = 5.0 \text{ V}$, $T_C = 25^{\circ}\text{C}$	78	Α
I _{C100}	Collector Current Continuous at $V_{GE} = 5.0 \text{ V}$, $T_C = 100^{\circ}\text{C}$	55	Α
V_{GEM}	Gate-to-Emitter Voltage Continuous	±10	V
P_{D}	Power Dissipation Total, T _C = 25°C	300	W
	Power Dissipation Derating, $T_C > 25^{\circ}C$	2	W/°C
T _J , T _{STG}	Operating Junction and Storage Temperature Range	-55 to +175	°C
TL	Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	300	°C
T _{PKG}	Reflow Soldering according to JESD020C	260	°C
ESD	ESD HBM-Electrostatic Discharge Voltage at 100 pF, 1500 Ω		kV
	CDM–Electrostatic Discharge Voltage at 1 Ω	2	kV


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Self clamped inductive Switching Energy (E_{SCIS25}) of 500 mJ is based on the test conditions that is starting T_J = 25°C, L = 3 mHy, I_{SCIS} = 18.3 A, V_{CC} = 100 V during inductor charging and VCC = 0 V during time in clamp.
- Self Clamped inductive Switching Energy (E_{SCIS150}) of 300 mJ is based on the test conditions that is starting T_J = 150°C, L = 3 mHy, I_{SCIS} = 14.2 A, V_{CC} = 100 V during inductor charging and V_{CC} = 0 V during time in clamp.

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

THERMAL RESISTANCE RATINGS

Characteristic	Symbol	Max	Units
Junction-to-Case - Steady State (Drain)	$R_{ heta JC}$	0.5	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
OFF CHARA	ACTERISTICS						-
BV _{CER}	Collector-to-Emitter Breakdown Voltage	$I_{CE} = 2 \text{ mA}, V_{GE} = 0 \text{ V},$ $R_{GE} = 1 \text{ k}\Omega, T_{J} = -40 \text{ to } 150 ^{\circ}\text{C}$		615	650	685	V
BV _{CES}	Collector-to-Emitter Breakdown Voltage	I _{CE} = 10 mA, V _{GE} = 0 V, R _{GE} = 0, T _J = -40 to 150°C		635	680	710	V
BV _{ECS}	Emitter-to-Collector Breakdown Voltage	$I_{CE} = -75 \text{ mA}, V_{GE} = 0 \text{ V},$ $T_{J} = 25^{\circ}\text{C}$		28	_	-	V
BV _{GES}	Gate-to-Emitter Breakdown Voltage	I _{GES} = ±2 mA		±12	±14	-	٧
I _{CER}	Collector-to-Emitter Leakage Current	V _{CE} = 250 V	T _J = 25°C	-	-	25	μΑ
		$R_{GE} = 1 k\Omega$	T _J = 150°C	-	-	1	mA
I _{ECS}	Emitter-to-Collector Leakage Current	V _{EC} = 24 V	T _J = 25°C	-	-	1	mA
			T _J = 150°C	-	-	40	
R ₁	Series Gate Resistance	1		-	115	-	Ω
R ₂	Gate-to-Emitter Resistance	1		10K	-	30K	Ω
ON CHARAC	CTERISTICS			•	•	•	
V _{CE(SAT)}	Collector–to–Emitter Saturation $I_{CE} = 10 \text{ A}, V_{GE} = 4.5 \text{ V},$		4.5 V, T _J = 25°C	-	1.12	1.33	V
	Voltage	I _{CE} = 30 A, V _{GE} = 5 V, T _J = 25°C I _{CE} = 50 A, V _{GE} = 10 V, T _J = 25°C		-	1.56	1.80	
				-	1.80	2.15	
		I _{CE} = 15 A, V _{GE} = 5 V, T _J = 150°C		-	1.26	-	
OYNAMIC C	HARACTERISTICS			•	•	•	-
Q _{G(ON)}	Gate Charge	I _{CE} = 10 A, V _{CE} = 12 V, V _{GE} = 5 V		-	40	_	nC
V _{GE(TH)}	Gate-to-Emitter Threshold Voltage	I _{CE} = 1 mA V _{CE} = V _{GE}	T _J = 25°C	1.3	-	2.2	V
			T _J = 150°C	0.75	-	1.8	
V _{GEP}	Gate-to-Emitter Plateau Voltage	V _{CE} = 12 V, I _{CE} = 10 A		-	2.7	-	V
WITCHING	CHARACTERISTICS						
td _{(ON)R}	Current Turn-On Delay Time-Resistive	$V_{CE} = 14 \text{ V}, R_{L} = 1 \Omega, \\ V_{GE} = 5 \text{ V}, R_{G} = 470 \Omega, \\ T_{J} = 25^{\circ}\text{C}$		_	0.77	3	μs
t _{rR}	Current Rise Time-Resistive			-	1.5	7	
td _{(OFF)L}	Current Turn-Off Delay Time-Inductive	$V_{CE} = 300 \text{ V, L} = 1 \text{ mH,}$ $V_{GE} = 5 \text{ V, R}_{G} = 470 \Omega,$ $I_{CE} = 6.5 \text{ A, T}_{J} = 25^{\circ}\text{C}$		-	6.7	12	
t _{fL}	Current Fall Time-Inductive			_	3.4	15	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

PACKAGE MARKING AND ORDERING INFORMATION

Device	Package	Shipping [†]
FGB5065G2-F085	D ² PAK (Pb-Free)	800 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

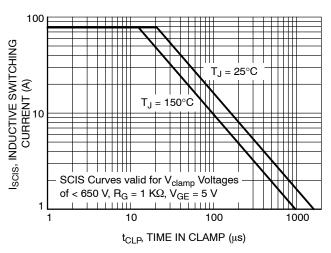


Figure 1. Self-Clamped Inductive Switching Current vs. Time in Clamp

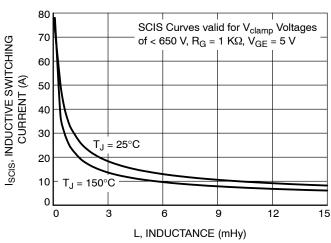


Figure 2. Self-Clamped Inductive Switching Current vs. Inductance

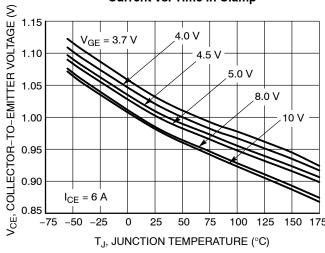


Figure 3. Collector-to-Emitter On-State Voltage vs. Junction Temperature

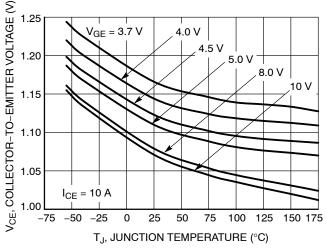


Figure 4. Collector-to-Emitter On-State Voltage vs. Junction Temperature

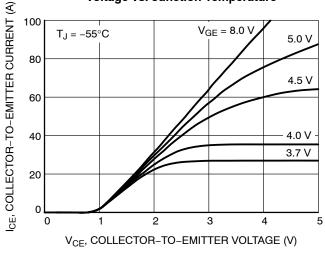


Figure 5. Collector-to-Emitter On-State Voltage vs. Collector Current

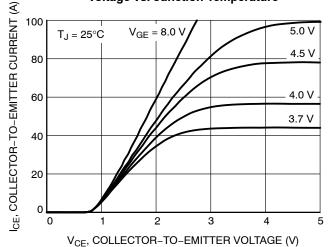


Figure 6. Collector-to-Emitter On-State Voltage vs. Collector Current

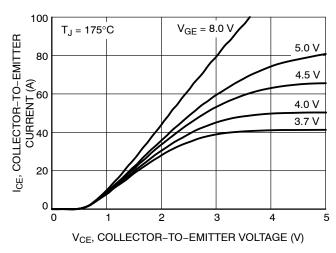


Figure 7. Collector-to-Emitter On-State Voltage vs. Collector Current

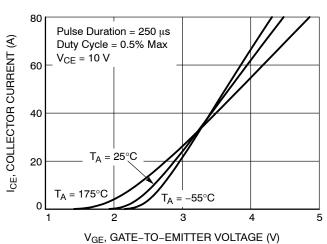


Figure 8. Transfer Characteristics

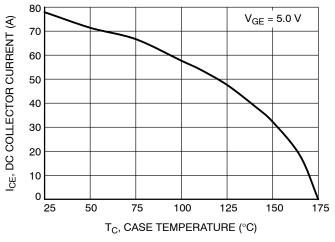


Figure 9. DC Collector Current vs. Case Temperature

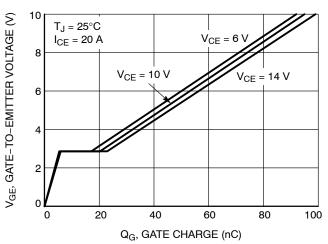


Figure 10. Gate Charge

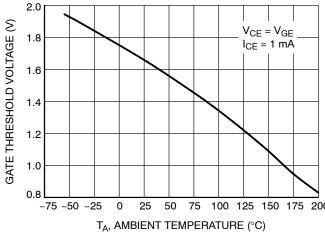


Figure 11. Threshold Voltage vs. Junction Temperature

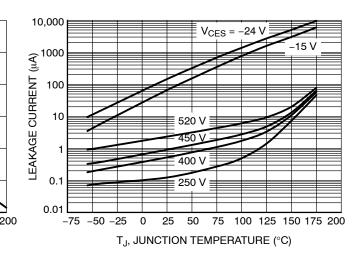


Figure 12. Leakage Current vs. Junction Temperature

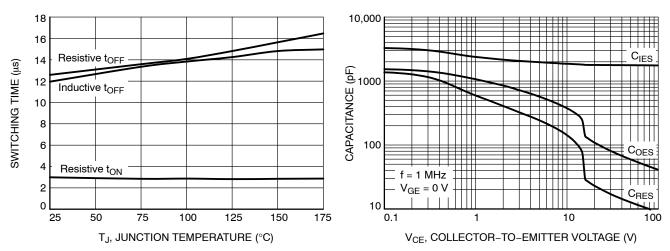


Figure 13. Switching Time vs. Junction Temperature

Figure 14. Capacitance vs. Collector to Emitter Voltage

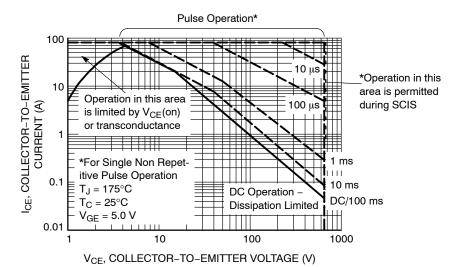
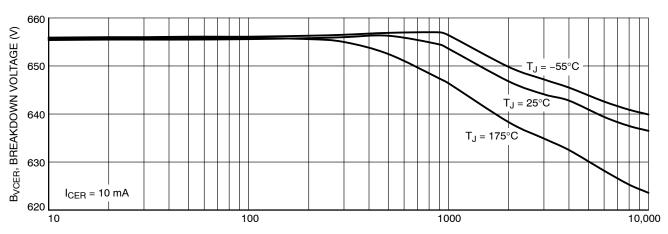



Figure 15. Forward Bias Safe Operating Area

 R_{GE} , GATE-TO-EMITTER RESISTANCE (Ω)

Figure 16. Breakdown Voltage vs. Series Resistance

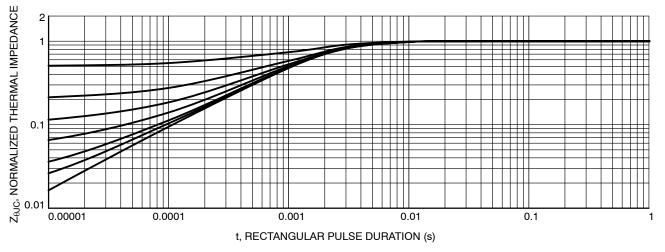


Figure 17. Normalized Transient Thermal Impedance, Junction to Case ($Z_{\theta JC}$)

TEST CIRCUIT AND WAVEFORMS

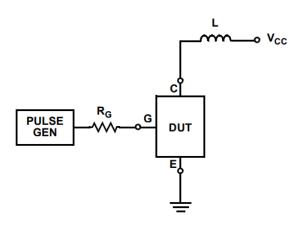


Figure 18. Inductive Switching Test Circuit

Figure 19. $t_{\mbox{\scriptsize ON}}$ and $t_{\mbox{\scriptsize OFF}}$ Switching Test Circuit

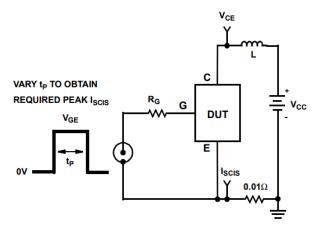


Figure 20. Energy Test Circuit

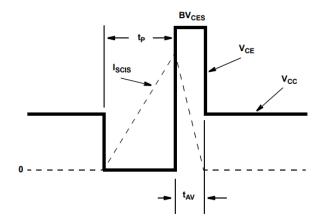
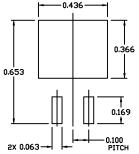



Figure 21. Energy Waveforms

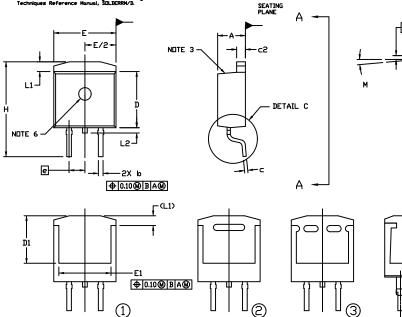
PACKAGE DIMENSIONS

D²PAK-3 (TO-263, 3-LEAD) CASE 418AJ

ISSUE F

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Ph-Free strategy and soldering details, please downlos the DN Seniconductor Soldering and Mounting


NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. CHAMEER OPTIONAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.005 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 5. THERMAL PAD CONTOUR IS OPTIONAL WITHIN DIMENSIONS E, L1, D1, AND E1.
- 6. OPTIONAL MOLD FEATURE.
- 7. ①,② ... OPTIONAL CONSTRUCTION FEATURE CALL DUTS.

INCHES		MILLIMETERS	
MIN.	MAX.	MIN.	MAX.
0.160	0.190	4.06	4.83
0.000	0.010	0.00	0.25
0.020	0.039	0.51	0.99
0.012	0.029	0.30	0.74
0.045	0.065	1.14	1.65
0.330	0.380	8.38	9.65
0.260		6.60	
0.380	0.420	9.65	10.67
0.245		6.22	
0.100 BSC		2.54 BSC	
0.575	0.625	14.60	15.88
0.070	0.110	1.78	2.79
	0.066		1.68
	0.070		1.78
0.010 BSC		0.25 BSC	
0*	8*	0*	8•
	MIN. 0.160 0.000 0.020 0.012 0.045 0.330 0.260 0.345 0.0245 0.100 0.575 0.070 0.010	MIN. MAX. 0.160 0.190 0.000 0.010 0.020 0.039 0.012 0.029 0.045 0.065 0.330 0.380 0.260 0.380 0.420 0.245 0.100 BSC 0.575 0.625 0.070 0.110 0.066 0.070 0.010 BSC	MIN. MAX. MIN. 0.160 0.190 4.06 0.000 0.010 0.00 0.020 0.039 0.51 0.012 0.029 0.30 0.045 0.065 1.14 0.330 0.380 8.38 0.260 6.60 0.380 0.420 9.65 0.245 6.22 0.100 BSC 2.54 0.575 0.625 14.60 0.070 0.110 1.78 0.066 0.070 0.95C 0.25

DETAIL C

TIP LEADFORM ROTATED 90° CW

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Sho

VIEW A-A

OPTIONAL CONSTRUCTIONS

PUBLICATION ORDERING INFORMATION

VIEW A-A

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Sup

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

Ш

For additional information, please contact your local Sales Representative