I3T80

Process Technology

I3T80: 0.35 μm Process Technology

ON Semiconductor®

www.onsemi.com

Overview

Providing the density of a 0.35 μ m digital process, analog/mixed-signal capability and high voltage, the ON Semiconductor Intelligent Interface Technology I3T80 process is the answer to the need for increased digital content in a mixed-signal and/or high voltage environment. Featuring high voltage devices up to 80 V as well as digital and analog operation at 3.3 V, the I3T80 process family features a wide range of capabilities in a single IC.

Features

- 3 to 5 Metal Layers
- Metal to Metal (MIM) Linear Capacitors
- High, Medium, and Low Resistivity Polysilicon Resistors
- Floating High-Voltage NDMOS and PDMOS Transistors
- Floating Medium-Voltage NDMOS Transistors
- Floating High- and Low-Voltage Diodes
- Medium-Voltage NPN Bipolar Transistors
- Medium-Voltage PNP Bipolar Transistors (Collector Grounded, High and Low Gain)
- Zener Zap Diode for OTP
- Buried Zener Diode for Clamping
- Polysilicon Clamping Diode
- High- and Medium-Voltage Floating Metal Capacitors
- Deep N+ Doped Guard Rings

PROCESS CHARACTERISTICS

Operating Voltage	3.3 V
Substrate Material	N-epitaxy on P-sub, Retrograde Wells
Drawn Transistor Length	0.35 μm
Gate Oxide Thickness	7.0 nm
Contact/Via Size	0.4 μm
Contacted Gate Pitch	1.3 μm
Top Metal Thickness	1020 nm
Metal Pitch	
Metal 1	1.0 μm
Metal 2	1.1 μm
Top Metal	1.4 μm
Contacted Metal Pitch	
Metal 1/ CNT	1.1 μm
Metal 1/ Via 1	1.2 μm
Metal 2 to Top 1 / Via	1.2 μm
Metal Composition	Al/Cu
Isolation	LOCOS
ILD Planarization	USG/BPTEOS+CMP
IMD Planarization	HDP/PETEOS+CMP

SAMPLE PROCESS OPTIONS

	Mask Layers
3 Metal, 80 V, MIMC, HIPO, OTP	23
4 Metal, 80 V, MIMC, HIPO, OTP	25
5 Metal, 80 V, MIMC, HIPO, OTP, Flash EEPROM	28

I3T80

DEVICE CHARACTERISTICS

All Values Typical at 25°C

LOW-VOLTAGE TRANSISTORS

NMOS Transistor	Typical Value	Units
Vt (10/0.35, linear extrapolated)	0.59	V
Vmax = Vbd	3.6	V
IDS (10/0.35, Vds = Vgs = 3.3 V)	3 V) 530 μA/μm	
PMOS Transistor	Typical Value	Units
Vt (10/0.35, linear extrapolated)	-0.57	V
Vmax = Vbd	-3.6	V
IDS (10/0.35, Vds = Vgs = 3.3 V)	-250	μ Α /μm

HIGH-VOLTAGE TRANSISTORS

Floating NMOS @ 80 V	Typical Value	Units
Vt (10/0.35, linear extrapolated)	0.59	V
Vmax = Vfloat to P-substrate	80	V
Vmax = Vbd	3.6	V
IDS (10/0.35, Vds = Vgs = 3.3 V)	530	μ A /μm
Floating PMOS @ 80 V	Typical Value	Units
Vt (10/0.35, linear extrapolated)	-0.57	V
Vmax = Vfloat to P-substrate	80	V
Vmax = Vbd	-3.6	V
IDS (10/0.35, Vds = Vgs = 3.3 V)	-250	μ A /μm
Floating NDMOS for Switching Application: VFNDM80	Typical Value	Units
Vt	0.54	V
Vmax = Vbd (higher if self protected)	70	V
Vgsmax (full lifetime)	3.6	V
Ids (Vds = 40, Vgs = 1.5 V)	100	μ A /μm
Ron*Area (block of 16 fingers) Without isolation With isolation	180 260	mΩ*mm ²
Floating NDMOS for Analog Application: VFNDM80A	Typical Value	Units
Vt	0.56	V
Vmax = Vbd (higher if self protected)	70	V
Vgsmax (full lifetime)	3.6	V
Ids (Vds = 40, Vgs = 1.5 V)	70	μ A /μm
Ron*Area (block of 16 fingers) Without isolation With isolation	250 325	mΩ*mm²

Floating Medium Voltage NDMOS	Typical Value	Units
Vt	0.58	V
Vmax = Vbd	14	V
Vgsmax (full lifetime)	3.6	V
lds (Vds = 10 V, Vgs = 3.3 V)	300	μ A /μm
Ron*Area	31	${ m m}\Omega^{*}{ m m}{ m m}^{2}$
Floating HV PMOS: LFPDM80	Typical Value	Units
Vt (W = 40 mm)	-0.56	V
Vmax = Vbd	-70	V
Vgsmax (full lifetime)	-3.6	V
Ids (Vds = 40 V, Vgs = 1.5 V)	18.5	μ Α /μm
Ron*Area	280	${ m m}\Omega^{*}{ m m}{ m m}^{2}$
Floating PDMOS: LFPDMS	Typical Value	Units
Vt	-0.56	V
Vmax = Vbd	-5.5	V
Vgsmax	-3.6	V
lds (Vds = 5 V, Vgs = 3.3 V)	96	μ A /μm

DIODES

Zener Diode: PBZD (a = 2 μm)	Typical Value	Units
Vz @ 100 μA	4.6	V
Rzener	45	Ω
lleak @ Vz = 0.5 V	200	nA
Zapping Zener Diode for OTP: UZZD	Typical Value	Units
Vz @ 1 A	1.5	V
Vbd @ 10 mA	4.5	V
Ileak_max @ Vz = 1 V	1.4	mA
Floating High Voltage Diode: FID80	Typical Value	Units
Vak_reverse, la = 100 nA	> 80	V
Vak_forw, lk = 100 μA	0.79	V
Isub/IA, Va = 0.7 V	0.5	%
Poly Diode for Gate Clamping: POLYD	Typical Value	Units
Vreverse @ Ia = 10 μA	6.8	V
lleak/W @ Vrev = 3.6 V	< 20	nA/μm

BIPOLAR TRANSISTORS

Vertical Medium-Voltage PNP: VPB		
(Parameter, E_area = 0.64 μm²)	Typical Value	Units
Hfe @ Ic = 10 μA	8	-
Bvceo @ lc = 1 μA	-63	V
Bvces @ Ic = 1 μA	-67	V
Icmax	250	μΑ
Vertical Medium-Voltage "High-Gain" PNP Transistor: VPHB		
(Parameter, E_area = 0.64 μm²)	Typical Value	Units
Hfe @ Ic = 100 nA	115	-
Bvceo @ Ic = 1 μA	> 80	V
Bvces @ Ic = 1 μA	> 100	V
Icmax	250	μΑ
Medium-Voltage NPN (Parameter, E_area = 16 μm²)	Typical Value	Units
Hfe max	120	-
Bvceo @ Ic = 1 μA	23	V
Bvces @ Ic = 1 μA	> 80	V
Vearly	> 70	V

CAPACITORS (PARAMETER @ 25°C)

Type (Maximum Voltage)	Typical Value	Units
Metal2 / Metal2.5 Plate: MIMC (3.6 V)	1.5	fF/μm ²
Metal1 / Metal3 Plate (80 V)	0.1	fF/μm²
Poly / Metal3 Plate (80 V)	0.14	fF/μm²
Metal1 / Metal3 Bar (80 V)	0.26	aF/μm/ finger
Poly / Metal3 Bar (80 V)	0.33	aF/μm/ finger

RESISTORS (PARAMETER @ 25°C)

Resistor Type	Typical Value	Units
High-Resistance Poly: HIPO	975	Ω /square
Salicided P+ Poly: LOPOR	2.4	Ω /square
Unsalicided P+ Poly: PPOLR	240	Ω /square
Unsalicided P+ in Mwell	64	Ω /square
Unsalicided N+ Poly: NPOLR	292	Ω /square
Unsalicided N+ in Pwell	47.5	Ω /square
Nwell under FOX (field oxide)	958	Ω /square
Nwell in AA (active area)	800	Ω/square
Pwell in AA (active area)	1755	Ω /square

LIBRARIES

Standard Cell	
Ultra High Density	pn sum: 2.0
Core Shell	Area of 2–input nand (na21): 38.88 μm ²
	Gate density (na21 @ 100% utilization): 25.72 k gates/mm ²
	Scan Flop density (scan flops @ 100% utilization): 3.215 k ff/mm ²
	Average power (@ 3.3 V): 0.2929 μW/MHz/gate
	Standard I/O
Fat Pad I/O Library (for core	190.80 μm min in–line pad pitch
limited designs)	203.40 μm pad height
Tall Pad I/O Library (for pad	97.20 μm min in–line pad pitch
limited designs)	374.40 μm pad height

MEMORY OPTIONS

RAM	
Synchronous High Speed / High	Minimum: 16 words x 2 bits
Temp Single Port SRAM	Maximum: 128 k bits (i.e: 16 k words x 8 bits, 8 k words x 16 bits,)
Synchronous High Speed / High	Minimum: 16 words x 2 bits
Temp Dual Port SRAM	Maximum: 128 k bits (i.e: 16 k words x 8 bits, 8 k words x 16 bits,)
Low Power Synchronous	Minimum: 64 words x 4 bits
SRAM	Maximum: 128 k bits (i.e: 16 k words x 8 bits, 8 k words x 16 bits,)
ROM	
Synchronous High Speed / High	Minimum: 256 words x 4 bits
Temp Diffusion ROM	Maximum: 512 k bits (i.e: 64 k words x 8 bits, 32 k words x 16 bits,)
Low Power Synchronous Via	Minimum: 256 words x 4 bits
Programmable ROM	Maximum: 512 k bits (i.e: 64 k words x 8 bits, 32 k words x 16 bits,)
Non-Volatile Memory	
OTP – One Time Programmable	Fuse: Zener Diode optimized for low power zapping
	Both Serial and Parallel Output Capability
	In field programming available
	Vector: Up to 320 bits

CAD TOOL COMPATIBILITY

Digital Design	Synopsys Design Compiler
	Cadence Verilog
Analog Design	Cadence DFII (4.4.6)
	Spectre
Place and Route	Synopsys Apollo
	Cadence Silicon Ensemble
Physical Verification	Mentor Graphics Calibre

ON Semiconductor and IIII are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and e

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative